戴氏精品堂VIP名师 12年教研团队保驾护航
学霸授课:985及以上毕业丰富带教经验,层层筛选 百里挑一
直击要点:紧扣考试说明 、分析命题趋势、剖析历年考题 、总结答题规律
分层定制:五阶课程逐步递进难度,结合具体学情适时调整
绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数。
(注意:绝对值的意义是数轴上表示某数的点离开原点的距离)。
(2)绝对值可表示为|a|。
(3)|a|是重要的非负数,即|a|≥0。(注意:|a|·|b|=|a·b|)。
有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数 > 0,小数-大数< 0.
互为倒数:
乘积为1的两个数互为倒数。
(注意:0没有倒数;若 a、b≠0,那么a/b的倒数是b/a;倒数是本身的数是±1;若ab=1,则a、b互为倒数;若ab=-1,则a、b互为负倒数。
有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数与0相加,仍得这个数。
有理数加法的运算律:
(1)加法的交换律:a+b=b+a 。
(2)加法的结合律:(a+b)+c=a+(b+c)。
有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
有理数乘法的运算律:
(1)乘法的交换律:ab=ba。
(2)乘法的结合律:(ab)c=a(bc)。
12、有理数除法法则:除以一个数等于乘以这个数的倒数。(注意:零不能做除数)
13、有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数。注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n, 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n
乘方的定义:
(1)求相同因式积的运算,叫做乘方。在这个世界上,读书是成本最低,收效最大的投资,所有的成功都不是一日之功,需要同学们坚持不懈的努力哦!感谢大家对成都戴氏教育精品堂学校的支持,我们会继续努力为同学们带来更多的帮助